
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 20: Model Predictive Control
November 18, 2022

Lecturer: Laurent Lessard Scribe: Xavier Hubbard

In this lecture we explore the idea of Model Predictive Control (MPC), also known as Receding
Horizon Control (RHC). First we develop a constrained LQR problem with an infinite horizon.
From here we discuss the drawbacks of LQR and develop MPC as an alternate strategy.

1 Model Predictive Control

1.1 Defining Constrained LQR

The dynamics of the constrained LQR system will be defined as follows:

J(x0) = minimize
u0,u1,...
x1,x2,...

∞∑
k=0

(xT
kQxk + uT

kRuk).

s.t. xk+1 = Axk +Buk for k = 0, 1, . . .

xk ∈ X, uk ∈ U

(1)

Note the important differences between this and our previous definitions of the LQR problem. Here
we are allowing k to go to infinity, we are optimizing over the states as well as the inputs, and the
states and inputs are themselves constrained to X and U respectively. The feasible sets X and U
can take various form, but there are a few common constraints worth talking about.

1. “box constraint”: lower and upper bounds on the components of a decision variable. These
linear constraints describe an n-dimensional box. They are easy to work with because each
individual scalar variable is separately constrained.

e.g. a ≤ xk ≤ b.

2. “ball constraint”: norm bound on a decision variable. If using the 2-norm, this constraint
couples the different components of the vector.

e.g. ∥xk∥ ≤ 1.

3. “polyhedral”: a set of linear constraints on a decision variable. In other words, the decision
variable must lie inside a polytope.

e.g. Fxk ≤ g.

4. “rate constraint”: constraining the rate at which a variable can change between timesteps.

e.g. ∥uk − uk−1∥ ≤ 10.

1

As with standard LQR, we make the typical assumptions

Q ⪰ 0 and R ≻ 0.

We also make the following assumptions

0 ∈ X and 0 ∈ U.

We add these constraints because we hope for a solution that doesn’t have infinite cost despite
having an infinite horizon. This means that xk and uk should eventually reach 0. Moreover, if the
feasible set were to exclude 0, then there would be some neighborhood around 0 that could never
be reached, implying that the infinite-horizon cost could never be finite.

1.2 Solving Constrained LQR

Now that we have defined the constrained LQR problem, we will focus on solving it. To solve the
unconstrained LQR problem we used a few solutions: dynamic programming, solving a large least
squares problem, and others. Both DP and solving the least squares problem will work, but DP
requires a few extra steps and will be discussed later. For now we will focus on setting up and
solving the problem as a large scale least squares optimization problem. In this case we can classify
this optimization problem as a quadratic program (QP) or a quadratically constrained quadratic
program (QCQP) depending on the constraints we have.

There is a problem with this approach, however. In determining the control inputs this way, you
have effectively designed an “open-loop” controller, and must deal with all of the problems that come
with such. Our solution to this problem will be “Model Predictive Control” (MPC). For reference,
MPC is just another name for “Receding Horizon Control” (RHC).

Imagine we are trying to use a controller to drive some state, x to 0 starting from x0 as t → ∞.
This can be simply visualized here:

2

MPC can then be understood in the following steps:

1. Choose a finite horizon N .

2. Solve the finite horizon LQR problem using (x0, N). This produces a set of optimal decisions
{u⋆0, u⋆1, . . . , u⋆N−1} and corresponding predicted states {x⋆1, . . . , x⋆N}.

3. Apply the first action u⋆0 to move to x1. Although we expect to move to x⋆1, there may be
some noise, unmodeled dynamics, etc. So we may not end up exactly at x⋆1.

4. Solve the finite horizon LQR problem using (x1, N).

5. Apply the first action again, to move to x2.

6. repeat.

Since you are re-evaluating the problem at each step, MPC allows you to deal with noise in the
process, and can be thought of as pseudo-open-loop. Since this method is essentially stitching
together many open-loop solutions, we can no longer guarantee optimality. However, it still serves
as a useful heuristic, despite needing tuning. If 90% of the worlds controllers are PID, the other
10% are MPC. People use this because it works!

3

1.3 Designing an MPC Controller

There are 3 key concerns when designing an MPC controller:

1. Computation: The computational complexity of the problem, which is dependent on the size
of the finite horizon. Longer horizons require solving larger optimization problems (more
variables and constraints) at each timestep. When using the controller in real-time, we may
be limited in terms of how much time we have to solve an optimization problem before we
must make our next decision.

2. Feasibility : Finding a feasible solution for a given timestep of the process does not guarantee
that a feasible solution will always exist in the future. An example of this is a car with a
limited sensor range that has a simple constraint of “don’t hit walls.” If the car is going fast
enough, there can exist a time-step where the wall enters the sensor range and there is no
feasible solution to avoid hitting it despite everything being fine on the previous timestep.
Selecting a larger finite horizon N increases the likelihood of continued feasibility, however
there’s a trade-off with additional computational complexity.

3. Stability : It is difficult to know whether the state, xk, and input, uk, will eventually go to
zero. There can exist scenarios where the optimization problem is feasible at every timestep,
but the trajectory of the system oscillates forever.

One way to encourage the problem to remain feasible and stable is to modify the optimization
problem solved at each timestep to incorporate a suitably chosen terminal cost and terminal set
constraint. Here is the modified optimization problem.

Ĵ(z) = minimize
u0,u1,...,uN−1
x1,x2,...,xN

N−1∑
k=0

(
xT
kQxk + uT

kRuk

)
+xN

TQfxN .

s.t. x0 = z, xN ∈ Xf ,

xk+1 = Axk +Buk for k = 0, 1, . . .

xk ∈ X, uk ∈ U

(2)

Ensuring optimality or feasibility. We will discuss two simple methods of guaranteeing fea-
sibility or optimality. These methods typically require large N so they often aren’t practical, but
still worth knowing about.

1. If the infinite-horizon cost is to be finite, xt and ut must go to zero as t → ∞. Therefore,
for t sufficiently large, the constraints xk ∈ X and uk ∈ U will be slack for all k ≥ t. In
other words, the tails of the trajectories of x and u will remain in the strict interior of X
and U , respectively. From this point forward, the solution to the constrained LQR problem
will be the same as that of the unconstrained LQR problem, which we know is given by the
infinite-horizon LQR policy ut = Kxt and associated cost-to-go V (z) = zTPz.

Suppose we could pick N large enough that the constraints are slack for t ≥ N . Then, the
optimal cost from that point forward should be V (xN) = xT

NPxN . This means that if we
pick Qf = P (we can set Xf = X) in (2), then the MPC approach will actually produce the
optimal constrained infinite-horizon controller! Unfortunately, it is hard to know how large
N needs to be. In general, it will be problem-dependent.

4

2. If you pick Xf = {0}, the set containing only 0, you can guarantee “recursive feasibility.”
Recursive feasibility means that you are guaranteed to have feasibility forever so long as you
are feasible initially. This is a very strict constraint as it requires a solution that gets you to 0
at the end of your horizon. This means that if N is too small, there may not exist an initially
feasible solution.

The way to think about this is to imagine having a solution that gets you to 0 successfully
within your finite horizon. If you execute the first step of that solution, you can guarantee
that the optimization problem for the next timestep will be feasible, since you can use the
computed path for the previous timestep and just add uN = 0, which together with xN = 0
yields xN+1 = 0, so we are again satisfying the terminal state constraint.

These two approaches are straightforward to implement but often require N to be too large to be
practical. In the next lecture, we will see how these approaches can be refined to be made more
practical.

Improving MPC performance. Simple steps can be taken to improve the practical performance
of an MPC controller. A larger finite horizon N always leads to better performance, so the goal of
all of these suggestions is to allow for a larger N .

1. Simplify the model/constraints. Using a model with smaller state dimension or simplified
constraints can decrease the size of the optimization problem that must be solved at each
timestep, which means it can be solved faster, which means we can use a larger N . There is
a trade-off; using an approximate model means a less accurate solution, but one that can be
computed more quickly.

2. Solve approximately. Most optimization solvers are iterative in nature, meaning they itera-
tively refine the solution. Decreasing the accuracy demanded of the solution means we can
get to an approximate solution more quickly. Again, this is a trade-off. Solving the problem
approximately means we can afford to solve larger instances, so we can increase the horizon
length. Most numerical solvers solve to machine precision by default (10−16). This is overkill
for most applications, where a motor or a voltage source might only be able to provide incre-
ments of maybe 10−3.

3. Solve every k steps. Instead of only implementing the first action of the plan (recomputing an
optimal plan at every timestep), you can implement the first k steps of the plan and recompute
a plan every k timesteps. This allows for more time to solve each optimization, so a longer
horizon can be used. Again, there are trade-offs. Such an approach is obviously not a good
idea if there is a lot of process noise in the system.

4. Warm-starting. By providing a very good initial guess, iterative solvers converge to the solu-
tion more rapidly. It is often a good guess to use the solution from the previous step as the
initial guess for the current step. This is called warm-starting. Care needs to be taken if using
warm-start because the first timestep will always be a cold start!

5

2 MPC example: Pitch-altitude control

The following1 is a linearized continuous-time model of a Cessna Citation aircraft at an altitude of
5000 m and a speed of 128.2 m/sec.

ẋ =

−1.2822 0 0.98 0

0 0 1 0
−5.4293 0 −1.8366 0
−128.2 128.2 0 0

x+

−0.3
0

−17
0

u

y =

[
0 1 0 0
0 0 0 1

]
x

The states, input, and outputs are:

• x1: angle of attack (in radians). This is the angle the plane makes with its velocity vector.

• x2: pitch angle (in radians). This is the angle the plane makes with respect to the horizon.

• x3: pitch rate (in rad/sec). This is the rate of change of the pitch angle.

• x4: altitude (in meters). Measured with respect to the nominal altitude of 5000 m.

• u: elevator angle (in radians). The elevator is a control surface on the horizontal tail that
can be angled down (positive angle) or angled up (negative angle). A positive elevator angle
causes the plane tail to rise, causing the airplane to pitch down.

• y: the output is the pitch angle and the altitude.

The goal is to design a controller that regulates the altitude to zero subject to the constraints:

• We assume we can measure the full state, but only at a sampling rate of Ts = 0.25 seconds.
This is also how frequently we can send a new actuator command.

• |u| ≤ 0.262 (±15◦) and |u̇| ≤ 0.524 (±30◦/sec). These are mechanical constraints on the
elevator that limit the range and rate of motion.

• |x2| ≤ 0.349 (±20◦). This is a comfort constraint for the passengers.

The first step is to discretize the dynamics, which we can do using Matlab’s c2d(...) command
using the sampling rate of 0.25. This produces dynamics:

xt+1 =

0.6136 0 0.1570 0
−0.1280 1 0.1904 0
−0.8697 0 0.5248 0
−27.5636 32.05 0.4087 1

︸ ︷︷ ︸

A

xt +

−0.4539
−0.4436
−3.1989
0.6068

︸ ︷︷ ︸

B

ut

yt =

[
0 1 0 0
0 0 0 1

]
︸ ︷︷ ︸

C

xt

1Model borrowed from the course ME231A at UC Berkeley. Developed by F. Borrelli, C. Jones, and M. Morari.
http://www.mpc.berkeley.edu/mpc-course-material/MPC_handsout.pdf

6

http://www.mpc.berkeley.edu/mpc-course-material/MPC_handsout.pdf

We will now design a constrained LQR controller. The corresponding optimization problem is

minimize
u,x

∞∑
t=0

xT
t Qxt + uT

t Rut (state update)

subject to: xt+1 = Axt +But
−∞

−0.349
−∞
−∞

 ≤ xt ≤

∞

0.349
∞
∞

 (pitch constraint)

− 0.262 ≤ ut ≤ 0.262 (elevator constraint)

− 0.524 ≤ ut+1 − ut
Ts

≤ 0.524 (elevator rate constraint)

In Figs. 1 to 7, we simulate several different scenarios and discuss the outcomes.

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-200

-150

-100

-50

0

50

100

150
Total cost: 34438

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-200

0

200

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-1000

-500

0

ra
te

(d
eg
/
se
c)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-200

-100

0

100

a
n
g
le

(d
eg
)

Pitch angle x2(t)

Figure 1: Ordinary LQR with Q = I and R = 100. No constraints are imposed and
naturally, the solution does not obey any of the constraints.

7

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-80

-60

-40

-20

0

20

40

60

80

100

120
Total cost: 64752

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-100

0

100

ra
te

(d
eg
/s
ec
)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-50

0

50

a
n
g
le

(d
eg
)

Pitch angle x2(t)

Figure 2: Ordinary LQR with Q = I and R = 100, except this time, we clip the inputs
so if ut > 0.262, we set ut = 0.262. Similarly, if ut < −0.262, we set ut = −0.262. This
forces ut to satisfy the constraints, but we do not satisfy the other two constraints. The
clipping also induces some unwanted oscillation in the response.

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-60

-40

-20

0

20

40

60

80

100

120
Total cost: 56822

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

ra
te

(d
eg
/
se
c)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-50

0

50

an
g
le

(d
eg
)

Pitch angle x2(t)

Figure 3: MPC with Q = I and R = 100 and a horizon of N = 10 (10 steps corresponds
to 2.5 sec since the sample time is 0.25 sec), but we only impose the constraint |ut| ≤
0.262. This does not oscillate as much as LQR with clipped inputs, but the other two
constraints are still not satisfied.

8

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

40

60

80

100

120
Total cost: 77985

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

ra
te

(d
eg
/s
ec
)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

a
n
g
le

(d
eg
)

Pitch angle x2(t)

Figure 4: MPC with Q = I and R = 100 and a horizon of N = 10, using all constraints.
All constraints are satisfied, and the solution looks pretty good!

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

40

60

80

100

120
Total cost: 78658

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

ra
te

(d
eg
/
se
c)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

a
n
gl
e
(d
eg
)

Pitch angle x2(t)

Figure 5: MPC with Q = I and R = 100 and a horizon of N = 5, using all constraints.
With this shorter horizon, a feasible solution is still found, but it oscillates a bit more.

9

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

40

60

80

100

120
Total cost: 79428

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

40

ra
te

(d
eg
/s
ec
)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

a
n
g
le

(d
eg
)

Pitch angle x2(t)

Figure 6: MPC with Q = I and R = 100 and a horizon of N = 3, using all constraints.
The horizon is too short: a feasible solution is found, but it is unstable and oscillates
endlessly, so the infinite-horizon cost will be infinite. Note: if we use N = 2 we lose
feasibility on the third timestep.

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

40

60

80

100

120
Total cost: 120237

pitch angle x2(t) (deg)
altitude x4(t) (m)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

a
n
g
le

(d
eg
)

Elevator angle u(t)

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

ra
te

(d
eg
/
se
c)

Elevator rate _u(t)

0 1 2 3 4 5 6 7 8 9 10

time (sec)

-20

0

20

an
g
le

(d
eg
)

Pitch angle x2(t)

Figure 7: We can also satisfy all constraints by just using ordinary LQR but with
R = 106. This is not a reliable approach (it’s not clear how to pick R ahead of time),
and here it leads to a very slow. A more reliable way to slow down the response and
also guarantee that all constraints are satisfied is to just use a larger R with MPC!

10

	Model Predictive Control
	Defining Constrained LQR
	Solving Constrained LQR
	Designing an MPC Controller

	MPC example: Pitch-altitude control

